Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
1.
biorxiv; 2023.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2023.04.20.536837

ABSTRACT

Coronavirus (CoV) spikes mediate receptor binding and membrane fusion, making them prime targets for neutralising antibodies. In the cases of SARS-CoV, SARS-CoV-2, and MERS-CoV, spikes transition freely between open and closed conformations to balance host cell attachment and immune evasion. The open conformation exposes domain S1B, allowing it to bind to proteinaceous cell surface receptors. It also facilitates protein refolding during spike-mediated membrane fusion. However, with a single exception, the pre-fusion spikes of all other CoVs studied so far have been observed exclusively in the closed state. This raises the possibility of regulation, where spikes more commonly transition to open states in response to specific cues, rather than spontaneously. In our study, using cryo-EM and molecular dynamics simulations, we show that the spike protein of the common cold human coronavirus HKU1 undergoes local and long-range conformational changes upon binding a sialoglycan-based primary receptor to domain S1A. This binding triggers the transition of S1B domains to the open state via allosteric inter-domain cross-talk. Our findings paint a more elaborate picture of CoV attachment, with possibilities of dual receptor usage and priming of entry as a means of immune escape.


Subject(s)
Coronavirus Infections
2.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.11.11.516114

ABSTRACT

The ongoing COVID-19 pandemic has had great societal and health consequences. Despite the availability of vaccines, infection rates remain high due to immune evasive Omicron sublineages. Broad-spectrum antivirals are needed to safeguard against emerging variants and future pandemics. We used mRNA display under a reprogrammed genetic code to find a spike-targeting macrocyclic peptide that inhibits SARS-CoV-2 Wuhan strain infection and also pseudoviruses containing spike proteins of SARS-CoV-2 variants or related sarbecoviruses. Structural and bioinformatic analyses reveal a conserved binding pocket between the receptor binding domain and other domains, distal to the ACE2 receptor-interaction site. Collectively, our data reveal a hitherto unexplored site of vulnerability in sarbecoviruses that can be targeted by peptides and potentially other drug-like molecules.


Subject(s)
Sprains and Strains , COVID-19
3.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.09.02.506332

ABSTRACT

The nucleocapsid protein N of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) enwraps and condenses the viral genome for packaging but is also an antagonist of the innate antiviral defense. It suppresses the integrated stress response (ISR), purportedly by interacting with stress granule (SG) assembly factors G3BP1 and 2, and inhibits type I interferon responses. To elucidate its mode of action, we systematically deleted and over-expressed distinct regions and domains. We show that N via domain N2b blocks PKR-mediated ISR activation, as measured by suppression of ISR-induced translational arrest and SG formation. N2b mutations that prevent dsRNA binding abrogate these activities also when introduced in the intact N protein. Substitutions reported to block post-translation modifications of N or its interaction with G3BP1/2 did not have a detectable additive effect. In an encephalomyocarditis virus-based infection model, N2b - but not a derivative defective in RNA binding - prevented PKR activation, inhibited {beta}-interferon expression and promoted virus replication. Apparently, SARS-CoV-2 N inhibits innate immunity by sequestering dsRNA to prevent activation of PKR and RIG-I-like receptors. Observations made for the N protein of human coronavirus 229E suggests that this may be a general trait conserved among members of other orthocoronavirus (sub)genera. SIGNIFICANCE STATEMENTSARS-CoV-2 nucleocapsid protein N is an antagonist of innate immunity but how it averts virus detection by intracellular sensors remains subject to debate. We provide evidence that SARS-CoV-2 N, by sequestering dsRNA through domain N2b, prevents PKR-mediated activation of the integrated stress response as well as detection by RIG-I-like receptors and ensuing type I interferon expression. This function, conserved in human coronavirus 229E, is not affected by mutations that prevent posttranslational modifications, previously implicated in immune evasion, or that target its binding to stress granule scaffold proteins. Our findings further our understanding of how SARS-CoV-2 evades innate immunity, how this may drive viral evolution and why increased N expression may have been a selective advantage to SARS-CoV-2 variants of concern.


Subject(s)
Severe Acute Respiratory Syndrome , Skull Base Neoplasms
4.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.07.25.501353

ABSTRACT

Plus-strand RNA viruses are the largest group of viruses. Many are human pathogens that inflict a socio-economic burden. Interestingly, plus-strand RNA viruses share remarkable similarities in their replication. A hallmark of plus-strand RNA viruses is the remodeling of intracellular membranes to establish replication organelles (so-called “replication factories”), which provide a protected environment for the replicase complex, consisting of the viral genome and proteins necessary for viral RNA synthesis. In the current study, we investigate pan-viral similarities and virus-specific differences in the life cycle of this highly relevant group of viruses. We first measured the kinetics of viral RNA, viral protein, and infectious virus particle production of hepatitis C virus (HCV), dengue virus (DENV), and coxsackievirus B3 (CVB3) in the immuno-compromised Huh7 cell line and thus without perturbations by an intrinsic immune response. Based on these measurements, we developed a detailed mathematical model of the replication of HCV, DENV, and CVB3 and show that only small virus-specific changes in the model were necessary to describe the in vitro dynamics of the different viruses. Our model correctly predicted virus-specific mechanisms such as host cell translation shut off and different kinetics of replication organelles. Further, our model suggests that the ability to suppress or shut down host cell mRNA translation may be a key factor for in vitro replication efficiency which may determine acute self-limited or chronic infection. We further analyzed potential broad-spectrum antiviral treatment options in silico and found that targeting viral RNA translation, especially polyprotein cleavage, and viral RNA synthesis may be the most promising drug targets for all plus-strand RNA viruses. Moreover, we found that targeting only the formation of replicase complexes did not stop the viral replication in vitro early in infection, while inhibiting intracellular trafficking processes may even lead to amplified viral growth. Author summary Plus-strand RNA viruses comprise a large group of related and medically relevant viruses. The current global pandemic of COVID-19 caused by the SARS-coronavirus-2 as well as the constant spread of diseases such as dengue and chikungunya fever show the necessity of a comprehensive and precise analysis of plus-strand RNA virus infections. Plus-strand RNA viruses share similarities in their life cycle. To understand their within-host replication strategies, we developed a mathematical model that studies pan-viral similarities and virus-specific differences of three plus-strand RNA viruses, namely hepatitis C, dengue, and coxsackievirus. By fitting our model to in vitro data, we found that only small virus-specific variations in the model were required to describe the dynamics of all three viruses. Furthermore, our model predicted that ribosomes involved in viral RNA translation seem to be a key player in plus-strand RNA replication efficiency, which may determine acute or chronic infection outcome. Furthermore, our in-silico drug treatment analysis suggests that targeting viral proteases involved in polyprotein cleavage, in combination with viral RNA replication, may represent promising drug targets with broad-spectrum antiviral activity.


Subject(s)
COVID-19 , Hepatitis C
5.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.02.17.480751

ABSTRACT

The ongoing evolution of SARS-CoV-2 has resulted in the emergence of Omicron, which displays striking immune escape potential. Many of its mutations localize to the spike protein ACE2 receptor-binding domain, annulling the neutralizing activity of most therapeutic monoclonal antibodies. Here we describe a receptor-blocking human monoclonal antibody, 87G7, that retains ultrapotent neutralization against SARS-CoV-2 variants including the Alpha, Beta, Gamma, Delta and Omicron (BA.1/BA.2) Variants-of-Concern (VOCs). Structural analysis reveals that 87G7 targets a patch of hydrophobic residues in the ACE2-binding site that are highly conserved in SARS-CoV-2 variants, explaining its broad neutralization capacity. 87G7 protects mice and/or hamsters against challenge with all current SARS-CoV-2 VOCs. Our findings may aid the development of sustainable antibody-based strategies against COVID-19 that are more resilient to SARS-CoV-2 antigenic diversity.


Subject(s)
Severe Acute Respiratory Syndrome , COVID-19
6.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.04.01.436305

ABSTRACT

Early in the global SARS-CoV-2 pandemic concerns were raised regarding infection of other animal hosts and whether these could play a significant role in the viral epidemiology. Infection of animals could be detrimental by causing clinical disease but also of concern if they become a viral reservoir allowing further mutations, plus having the potential to infect other animals or humans. The first reported animals to be infected both under experimental conditions and from anecdotal field evidence were cats described in China early in 2020. Given the concerns this finding raised and the close contacts between humans and cats, we aimed to determine whether a vaccine candidate could be developed that was suitable for use in multiple susceptible animal species and whether this vaccine could reduce infection of cats in addition to preventing spread to other cats. Here we report that a Replicon Particle (RP) vaccine based on Venezuelan equine encephalitis virus (VEEV), known to be safe and efficacious for use in a variety of animals, expressing a stabilised Spike antigen, could induce neutralising antibody titers in guinea pigs and cats. After two intramuscular vaccinations, virus neutralising antibodies were detected in the respiratory tract of the guinea pigs and a cell mediated immune response was induced. The design of the SARS-CoV-2 antigen was shown to be critical in developing a strong neutralising antibody response. Vaccination of cats was able to induce a serum neutralising antibody response which lasted for the course of the experiment. Interestingly, in contrast to control animals, infectious virus could not be detected in oropharyngeal or nasal swabs of vaccinated cats after challenge. Moreover, the challenged control cats spread the virus to in-contact cats whereas the vaccinated cats did not transmit virus. The results show that the RP vaccine induces sterile immunity preventing SARS-CoV-2 infection and transmission. This data suggests that this RP vaccine could be a multi-species vaccine useful for preventing spread to and between other animals should that approach be required.


Subject(s)
Encephalitis , COVID-19
7.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.02.02.21250910

ABSTRACT

Mucosal antibodies play a key role in protection against SARS-CoV-2 exposure, but their role during primary infection is not well understood. We assessed mucosal antibody responses during primary infection with SARS-CoV-2 and examined their relationship with viral load and clinical symptoms. Elevated mucosal IgM was associated with lower viral load. RBD and viral spike protein-specific mucosal antibodies were correlated with decreases in systemic symptoms, while older age was associated with an increase in respiratory symptoms. Up to 42% of household contacts developed SARS-CoV-2-specific mucosal antibodies, including children, indicating high transmission rates within households in which children might play an important role.


Subject(s)
COVID-19
8.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.10.31.363044

ABSTRACT

Heterogeneous immunoassays such as ELISA have become indispensable in modern bioanalysis, yet translation into easy-to-use point-of-care assays is hindered by their dependence on external calibration and multiple washing and incubation steps. Here, we introduce RAPPID (Ratiometric Plug-and-Play Immunodiagnostics), a "mix-and-measure" homogeneous immunoassay platform that combines highly specific antibody-based detection with a ratiometric bioluminescent readout that can be detected using a basic digital camera. The concept entails analyte-induced complementation of split NanoLuc luciferase fragments, photoconjugated to an antibody sandwich pair via protein G adapters. We also introduce the use of a calibrator luciferase that provides a robust ratiometric signal, allowing direct in-sample calibration and quantitative measurements in complex media such as blood plasma. We developed RAPPID sensors that allow low-picomolar detection of several protein biomarkers, anti-drug antibodies, therapeutic antibodies, and both SARS-CoV-2 spike protein and anti-SARS-CoV-2 antibodies. RAPPID combines ratiometric bioluminescent detection with antibody-based target recognition into an easy-to-implement standardized workflow, and therefore represents an attractive, fast, and low-cost alternative to traditional immunoassays, both in an academic setting and in clinical laboratories for point-of-care applications.


Subject(s)
Severe Acute Respiratory Syndrome
9.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.09.30.318261

ABSTRACT

SARS-CoV-2 has caused a global outbreak of severe respiratory disease (COVID-19), leading to an unprecedented public health crisis. To date, there has been over thirty-three million diagnosed infections, and over one million deaths. No vaccine or targeted therapeutics are currently available. We previously identified a human monoclonal antibody, 47D11, capable of cross-neutralising SARS-CoV-2 and the related 2002/2003 SARS-CoV in vitro, and preventing SARS-CoV-2 induced pneumonia in a hamster model. Here we present the structural basis of its neutralization mechanism. We describe cryo-EM structures of trimeric SARS-CoV and SARS-CoV-2 spike ectodomains in complex with the 47D11 Fab. These data reveal that 47D11 binds specifically to the closed conformation of the receptor binding domain, distal to the ACE2 binding site. The CDRL3 stabilises the N343 glycan in an upright conformation, exposing a conserved and mutationally constrained hydrophobic pocket, into which the CDRH3 loop inserts two aromatic residues. Interestingly, 47D11 preferentially selects for the partially open conformation of the SARS-CoV-2 spike, suggesting that it could be used effectively in combination with other antibodies that target the exposed receptor-binding motif. Taken together, these results expose a cryptic site of vulnerability on the SARS-CoV-2 RBD and provide a structural roadmap for the development of 47D11 as a prophylactic or post-exposure therapy for COVID-19.


Subject(s)
COVID-19
10.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.09.29.319731

ABSTRACT

Background: SARS-CoV-2 is the causative agent of COVID-19 and a pathogen of immense global public health importance. Development of innovative direct-acting antiviral agents is sorely needed to address this virus. Peptide-conjugated morpholino oligomers (PPMO) are antisense agents composed of a phosphordiamidate morpholino oligomer covalently conjugated to a cell-penetrating peptide. PPMO require no delivery assistance to enter cells and are able to reduce expression of targeted RNA through sequence-specific steric blocking. Objectives and Methods: Five PPMO designed against sequences of genomic RNA in the SARS-CoV-2 5'-untranslated region and a negative control PPMO of random sequence were synthesized. Each PPMO was evaluated for its effect on the viability of uninfected cells and its inhibitory effect on the replication of SARS-CoV-2 in Vero-E6 cell cultures. Cell viability was evaluated with an ATP-based method and viral growth was measured with quantitative RT-PCR and TCID50 infectivity assays. Results: PPMO designed to base-pair with sequence in the 5'-terminal region or the leader transcription regulatory sequence-region of SARS-CoV-2 genomic RNA were highly efficacious, reducing viral titers by up to 4-6 log10 in cell cultures at 48-72 hours post-infection, in a non-toxic and dose-responsive manner. Conclusion: The data indicate that PPMO have the ability to potently and specifically suppress SARS-CoV-2 growth and are promising candidates for further pre-clinical development.


Subject(s)
COVID-19
11.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.08.25.256339

ABSTRACT

Globally accessible preventive and therapeutic molecules against SARS-CoV-2 are urgently needed. DARPin molecules are an emerging class of novel therapeutics based on naturally occurring repeat proteins ([~]15 kDa in size) and can be rapidly produced in bacteria in large quantities. Here, we report the identification of 380 DARPin molecules specifically targeting the SARS-CoV-2 spike protein selected from a naive library of 1012 DARPin molecules. Using extensive biophysical and biochemical characterization, (pseudo)virus neutralization assays and cryo-EM analysis, 11 mono-DARPin molecules targeting either the receptor binding domain (RBD), the S1 N-terminal-domain (NTD) or the S2 domain of the SARS-CoV-2 spike protein were chosen. Based on these 11 mono-DARPin molecules, 31 anti-SARS-CoV-2 multi-DARPin molecules were constructed which can broadly be grouped into 2 types; multi-paratopic RBD-neutralizing DARPin molecules and multi-mode DARPin molecules targeting simultaneously RBD, NTD and the S2 domain. Each of these multi-DARPin molecules acts by binding with 3 DARPin modules to the SARS-CoV-2 spike protein, leading to potent inhibition of SARS-CoV-2 infection down to 1 ng/ml (12 pM) and potentially providing protection against viral escape mutations. Additionally, 2 DARPin modules binding serum albumin, conferring an expected half-life of about 3 weeks in humans, were included in the multi-DARPin molecules. The protective efficacy of one multi-DARPin molecule was studied in a Golden Syrian hamster SARS-CoV-2 infection model, resulting in a significant reduction in viral load and pathogenesis. In conclusion, the multi-DARPin molecules reported here display very high antiviral potency, high-production yield, and a long systemic half-life, and thereby have the potential for single-dose use for prevention and treatment of COVID-19.


Subject(s)
COVID-19
12.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.08.25.265074

ABSTRACT

We identify a mutation in the N gene of SARS-CoV-2 that adversely affects annealing of a commonly used RT-PCR primer; epidemiologic evidence suggests the virus retains pathogenicity and competence for spread. This reinforces the importance of using multiple targets, preferably in at least 2 genes, for robust SARS-CoV-2 detection. Article Summary LineA SARS-CoV-2 variant that occurs worldwide and has spread in California significantly affects diagnostic sensitivity of an N gene assay, highlighting the need to employ multiple viral targets for detection.

13.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.08.25.267500

ABSTRACT

Early in the current pandemic, the D614G mutation arose in the Spike protein of SARS-CoV-2 and quickly became the dominant variant globally. Mounting evidence suggests D614G enhances viral entry. Here we use a direct competition assay with single-cycle viruses to show that D614G outcompetes the wildtype. We developed a cell line with inducible ACE2 expression to confirm that D614G more efficiently enters cells with ACE2 levels spanning the different primary cells targeted by SARS-CoV-2. Using a new assay for crosslinking and directly extracting Spike trimers from the pseudovirus surface, we found an increase in trimerization efficiency and viral incorporation of D614G protomers. Our findings suggest that D614G increases infection of cells expressing a wide range of ACE2, and informs the mechanism underlying enhanced entry. The tools developed here can be broadly applied to study other Spike variants and SARS-CoV-2 entry, to inform functional studies of viral evolution and vaccine development.

14.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.08.26.268854

ABSTRACT

SARS-CoV-2 has resulted in a global pandemic and shutdown economies around the world. Sequence analysis indicates that the novel coronavirus (CoV) has an insertion of a furin cleavage site (PRRAR) in its spike protein. Absent in other group 2B CoVs, the insertion may be a key factor in the replication and virulence of SARS-CoV-2. To explore this question, we generated a SARS-CoV-2 mutant lacking the furin cleavage site ({Delta}PRRA) in the spike protein. This mutant virus replicated with faster kinetics and improved fitness in Vero E6 cells. The mutant virus also had reduced spike protein processing as compared to wild-type SARS-CoV-2. In contrast, the {Delta}PRRA had reduced replication in Calu3 cells, a human respiratory cell line, and had attenuated disease in a hamster pathogenesis model. Despite the reduced disease, the {Delta}PRRA mutant offered robust protection from SARS-CoV-2 rechallenge. Importantly, plaque reduction neutralization tests (PRNT50) with COVID-19 patient sera and monoclonal antibodies against the receptor-binding domain found a shift, with the mutant virus resulting in consistently reduced PRNT50 titers. Together, these results demonstrate a critical role for the furin cleavage site insertion in SARS-CoV-2 replication and pathogenesis. In addition, these findings illustrate the importance of this insertion in evaluating neutralization and other downstream SARS-CoV-2 assays. ImportanceAs COVID-19 has impacted the world, understanding how SARS-CoV-2 replicates and causes virulence offers potential pathways to disrupt its disease. By removing the furin cleavage site, we demonstrate the importance of this insertion to SARS-CoV-2 replication and pathogenesis. In addition, the findings with Vero cells indicate the likelihood of cell culture adaptations in virus stocks that can influence reagent generation and interpretation of a wide range of data including neutralization and drug efficacy. Overall, our work highlights the importance of this key motif in SARS-CoV-2 infection and pathogenesis. Article SummaryA deletion of the furin cleavage site in SARS-CoV-2 amplifies replication in Vero cells, but attenuates replication in respiratory cells and pathogenesis in vivo. Loss of the furin site also reduces susceptibility to neutralization in vitro.


Subject(s)
Seizures , COVID-19
15.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.08.26.267724

ABSTRACT

There is growing evidence pointing to the protective role of T cells against COVID-19. Vaccines eliciting targeted T cell responses have the potential to provide robust, long-lasting immunity. However, their design requires knowledge of the SARS-CoV-2-specific epitopes that can elicit a T cell response and confer protection across a wide population. Here, we provide a unified description of emerging data of SARS-CoV-2 T cell epitopes compiled from results of 8 independent studies of convalescent COVID-19 patients. We describe features of these epitopes relevant for vaccine design, while indicating knowledge gaps that can, in part, be augmented using prior immunological data from SARS-CoV. The landscape of SARS-CoV-2 T cell epitopes that we describe can help guide SARS-CoV-2 vaccine development as well as future immunological studies. A web-based platform has also been developed to complement these efforts.


Subject(s)
COVID-19 , Severe Acute Respiratory Syndrome
16.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.08.26.266304

ABSTRACT

Coronaviruses (CoVs) are important human pathogens for which no specific treatment is available. Here, we provide evidence that pharmacological reprogramming of ER stress pathways can be exploited to suppress CoV replication. We found that the ER stress inducer thapsigargin efficiently inhibits coronavirus (HCoV-229E, MERS-CoV, SARS-CoV-2) replication in different cell types, (partially) restores the virus-induced translational shut-down, and counteracts the CoV-mediated downregulation of IRE1 and the ER chaperone BiP. Proteome-wide data sets revealed specific pathways, protein networks and components that likely mediate the thapsigargin-induced antiviral state, including HERPUD1, an essential factor of ER quality control, and ER-associated protein degradation complexes. The data show that thapsigargin hits a central mechanism required for CoV replication, suggesting that thapsigargin (or derivatives thereof) may be developed into broad-spectrum anti-CoV drugs. One Sentence Summary / Running titleSuppression of coronavirus replication through thapsigargin-regulated ER stress, ERQC / ERAD and metabolic pathways

17.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.08.25.267658

ABSTRACT

Corona Virus Disease-2019 (COVID-19) warrants comprehensive investigations of publicly available Severe Acute Respiratory Syndrome-CoronaVirus-2 (SARS-CoV-2) genomes to gain new insight about their epidemiology, mutations and pathogenesis. Nearly 0.4 million mutations were identified so far in [~]60,000 SARS-CoV-2 genomic sequences. In this study, we compared 207 of SARS-CoV-2 genomes reported from different parts of Bangladesh and their comparison with 467 globally reported sequences to understand the origin of viruses, possible patterns of mutations, availability of unique mutations, and their apparent impact on pathogenicity of the virus in victims of Bangladeshi population. Phylogenetic analyses indicates that in Bangladesh, SARS-CoV-2 viruses might arrived through infected travelers from European countries, and the GR clade was found as predominant in this region. We found 2602 mutations including 1602 missense mutations, 612 synonymous mutations, 36 insertions and deletions with 352 other mutations types. In line with the global trend, D614G mutation in spike glycoprotein was predominantly high (95.6%) in Bangladeshi isolates. Interestingly, we found the average number of mutations in ORF1ab, S, ORF3a, M and N of genomes, having nucleotide shift at G614 (n=459), were significantly higher (p[≤]0.001) than those having mutation at D614 (n=215). Previously reported frequent mutations such as P4715L, D614G, R203K, G204R and I300F were also prevalent in Bangladeshi isolates. Additionally, 87 unique amino acid changes were revealed and were categorized as originating from different cities of Bangladesh. The analyses would increase our understanding of variations in virus genomes circulating in Bangladesh and elsewhere and help develop novel therapeutic targets against SARS-CoV-2.


Subject(s)
Coronavirus Infections , COVID-19
18.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.08.26.266825

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a pandemic with millions of infected humans and hundreds of thousands of fatalities. As the novel disease - referred to as COVID-19 - unfolded, occasional anthropozoonotic infections of animals by owners or caretakers were reported in dogs, felid species and farmed mink. Further species were shown to be susceptible under experimental conditions. The extent of natural infections of animals, however, is still largely unknown. Serological methods will be useful tools for tracing SARS-CoV-2 infections in animals once test systems are validated for use in different species. Here, we developed an indirect multi-species ELISA based on the receptor-binding domain (RBD) of SARS-CoV-2. The newly established ELISA was validated using 59 sera of infected or vaccinated animals including ferrets, raccoon dogs, hamsters, rabbits, chickens, cattle and a cat, and a total of 220 antibody-negative sera of the same animal species. Overall, a diagnostic specificity of 100.0% and sensitivity of 98.31% was achieved, and the functionality with every species included in this study could be demonstrated. Hence, a versatile and reliable ELISA protocol was established that enables high-throughput antibody detection in a broad range of animal species, which may be used for outbreak investigations, to assess the seroprevalence in susceptible species or to screen for reservoir or intermediate hosts.


Subject(s)
COVID-19 , Severe Acute Respiratory Syndrome , Infections
19.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.08.26.267997

ABSTRACT

The heavy burden imposed by the COVID-19 pandemic on our society triggered the race towards the development of therapies or preventive strategies. Among these, antibodies and vaccines are particularly attractive because of their high specificity, low probability of drug-drug interaction, and potentially long-standing protective effects. While the threat at hand justifies the pace of research, the implementation of therapeutic strategies cannot be exempted from safety considerations. There are several potential adverse events reported after the vaccination or antibody therapy, but two are of utmost importance: antibody-dependent enhancement (ADE) and cytokine storm syndrome (CSS). On the other hand, the depletion or exhaustion of T-cells has been reported to be associated with worse prognosis in COVID-19 patients. This observation suggests a potential role of vaccines eliciting cellular immunity, which might simultaneously limit the risk of ADE and CSS. Such risk was proposed to be associated with FcR-induced activation of proinflammatory macrophages (M1) by Fu et al. 2020 and Iwasaki et al. 2020. All aspects of the newly developed vaccine (including the route of administration, delivery system, and adjuvant selection) may affect its effectiveness and safety. In this work we use a novel in silico approach (based on AI and bioinformatics methods) developed to support the design of epitope-based vaccines. We evaluated the capabilities of our method for predicting the immunogenicity of epitopes. Next, the results of our approach were compared with other vaccine-design strategies reported in the literature. The risk of immuno-toxicity was also assessed. The analysis of epitope conservation among other Coronaviridae was carried out in order to facilitate the selection of peptides shared across different SARS-CoV-2 strains and which might be conserved in emerging zootic coronavirus strains. Finally, the potential applicability of the selected epitopes for the development of a vaccine eliciting cellular immunity for COVID-19 was discussed, highlighting the benefits and challenges of such an approach.


Subject(s)
COVID-19 , Acquired Immunodeficiency Syndrome
20.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.08.24.264564

ABSTRACT

The major challenge of the COVID-19 health crisis is to identify the factors of susceptibility to SARS-Cov2 in order to adapt the recommendations to the populations and to reduce the risk of getting COVID-19 to the most vulnerable people especially those having chronic respiratory diseases (CRD) including cystic fibrosis (CF) and chronic pulmonary respiratory diseases (COPD). Airway epithelial cells (AEC) are playing a critical role in the immune response and in COVID-19 severity. SARS-CoV-2 infects the airways through ACE2 receptor and the host protease TMPRSS2 was shown to play a major role in SARS-CoV-2 infectivity. In this report we showed that Pseudomonas aeruginosa and its virulence factor flagellin (Fla-PA), a ligand of Toll-Like receptor 5 are able to increase TMPRSS2 expression in control and CF AEC. In contrast, no effect was observed with recombinant Salmonella typhimurium flagellin, used as an adjuvant in the clinical development of new vaccines against respiratory viruses. Considering the urgency of the health situation, this result is of major significance for patients with CRD (COPD, CF) which are frequently infected and colonized by P. aeruginosa during the course of the disease. In the general population, a P. aeruginosa ventilator-associated pneumonia in SARS-CoV-2 patients under intubation in intensive care units could be also deleterious and should be monitored with care.


Subject(s)
Respiratory Tract Diseases , Lung Diseases , Severe Acute Respiratory Syndrome , Cystic Fibrosis , Chronic Disease , COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL